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Intersystem-Crossing Dynamics in Heterodinuclear Polypyridyl-Bridged Complexes

Introduction

The synthesis and ground- and excited-state properties of
cyano- and polypyridyl-bridged homo- and heterobimetallic
complexes have received considerable atterti®ecent studies
have focused on issues such as (1) mechanisms for photoinitiate
electron-transfer () and energy-transfer (H) processes,

(2) the strength of the electronic coupling between the metal
centers mediated by the bridging ligahd3) vibrational
trapping, (i.e., large amplitude changes in nuclear positions tha
occur upon ET),* and (4) the synthesis of designer systems
for potential use as artificial photosynthetic deviées. subset

of these studies have focused on the spectroscopy and electro*
chemistry of multinuclear Pecyano/Ru-polypyridyl com-
pounds’ linkage and distance dependence fgTEprocesses
in polypyridyl-bridged heterobimetallic E&RU' compounds,
and electron delocalization in polyene-bridged' /Rel' com-

pounds’

Creutz and Sutin have demonstrated reductive quenching of
[Ru(bpyk]?™ by [Fe'"(CN)s]*~ with a diffusion-controlled
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The excited-state properties of [(M" (dpp)RU (bpy)](PFes)n (bpy = 2,2-bipyridine; dpp= (2,3-bis(2-pyridyl)-
pyrazine); (L)M" = (NH3)4sRU" (n = 4) or (CN)F€e' (n = 0)) have been investigated by steady-state and
time-resolved picosecond and nanosecond transient luminescence and absorption spectroscopic methods. The
[(NH3);RU' (dpp)RU (bpy)]*™ complex is nonemissive in room-temperaturgd-solution. Picosecond laser
flash photolysis of [(NH),RU'(dpp)RU(bpy)]*" reveals the formation of a transient species that decays
exponentially ¢ = 290 (£80) ps) independent of excitation wavelength. The excited-state behavior of
[(NC)4F€'(dpp)RU (bpy)]* display a complicated dependence on excitation wavelength. Following 591-nm
pulsed laser excitation into tH(ds) 2(*) g,] — (dz) 2] metal-to-ligand charge transfer (MLCT) band,

a short-lived transient is formed with < 80 ps. Laser excitation at 354.7 nm into tHédxz) gu(n*)

I::L)py/dp;J — (dx) gu] MLCT transition produces a transient species with 200 ns. One explanation for the
wavelength-dependent photophysics of the [(WF&)(dpp)RU (bpy)] is that the F& metal center undergoes

a low- to high-spin interconversion following(dx) gu(n*) épy,dm] — (dn) gu] excitation, a process not
accessible via direc{(dr) 2(*) §,] — Y[(dm) 2] excitation.

[Fe(CN}(bpy)?~ and [Ru(bpyl]?™ complexes have been
studied extensivel§1® and the synthetic protocols to prepare
heterobimetallic compounds are well developedVork in our
laboratories has focused on the synthesis and characterization
&’f the ground- and excited-state properties of heterobimetallic
complexes of the form [(NGFF€' (dpp)RU (phen)], where the
[FE'(CN)4]?~ fragment is an electron donor covalently bound
to the RU (bpy)?" with dpp as a bridging ligand (dpg 2,3-
t(2-pyridy|)pyrazine). The luminescence properties of [(NFE)-
(dpp)RU (phen)] have been presented previoudly. Recent
laser flash photolysis studies on the closely related [(R€')
(dpp)RU (bpy)] complex, however, reveal profound excitation
wavelength-dependent photophysics. Paradoxically, this be-
havior was not observed in [(NjiRU'(dpp)RU (bpy)]*t*,
where the observed photophysics were found to be independent
of excitation wavelength.

rate constantky = 3.5 x 10° M~ s7Y) in H.O, eq 18 \— 7\ =\ / \
7 - \ Y/
N N N =
_ Kq _
[Fe"(CN)el*™ + [Ru(bpy)]* ™ —[Fe" (CN)J*™ + [Ru bpy phen oop
(bpy)Xl™ (1)

The photochemistry and photophysics of the monometallic

Experimental Section
Water was obtained by distillation of deionized water in

TTo whom correspondence should be addressed at Wayne State
University.

alkaline permanganate in an all-glass apparatus. Spectrograde
CHsCN (Burdick and Jackson) was used without further

€ Abstract published ilAdvance ACS Abstract€ctober 15, 1997. purification for spectroscopic and electrochemical experiments.
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SCHEME 1

1 5 44+*
[(NH,)Ru' (0Fp) Ru"(bpy),]

A

1
1 (d”)iu(”*):,py/dpp]" [(d”)?(u]
A =355nm

I}
[(NH)Ru"-dpp - Ru' (opy)2] **

The synthesis of [(CNJe(dpp)Ru(bpy) and [(NHs)sRu(dpp)-
Ru(bpy)](PFs)4 were performed using literature protocéls?

Absorption spectra and cyclic voltammograms were obtained
using previously described instrumentation and prototols.
Details regarding the steady-state and time-resolved lumines-
cence spectroscopic methods and the picosecond flash photolysi
apparatus will be presented elsewh¥re.

Results and Discussion

The UV-visible absorption spectra of [(Nge'(dpp)-
Ru'(bpy)] and [(NHs)sRU' (dpp)RU (bpy)]*" in room-temper-
ature BO solution are dominated by high-energy intense ligand-
centeredr* — g transitions £ < 330 nm) and lower-energy,
1(d7) () gpd — H(dr) ], metal-to-ligand charge transfer
(MLCT) bands. Two lower energy MLCT bands for [(NEE'-
(dpp)RU (bpy)] were assigned (0(d) 3(7*) poyiapd
Y[(dx) & transitions 422 = 532 nm ¢ = 7100 M1 cm™1))
and*[(d7) ¥ dpd — (A7) 2 (A = 586 Nm € = 7400
M~1 cm™1)), respectively. For [(NR)4RU'(dpp)RU (bpy)]*T,
1(d7r) 2™ boyrapd — M(dm) R transitions atide, = 433
nm € = 6700 M cm—l)b and (dm)Rumig ™) dod
(d7)guy) transitions atigh = 541 nm ¢ = 1.2 x 10¢
M~1 cm™1) were similarly assigned.

The M and ligand-based reduction potentials were deter-
mined by cyclic voltammetry. There is a significant redox
asymmetry in [(L)M"(dpp)RU (bpy)]™", where the (LM"
((L)sM" = (NH3)4Ru (n = 4) or (CN)Fe (= 0)) metal centers
are~0.4—0.5 V easier to oxidize than the Ribpy), moiety.
Therefore, the odd electron in the mixed-valent j1)' (dpp)-
Ru'(bpy)]™™ and by inference the excited electron in
[(L) sM" (dpp~)RU! (bpy)] ™ (Scheme 1), should be localized
on the RU(bpy), portion of the heterobimetallic complex.

[((NH3z)RU' (dpp)RU (bpy)]*** in deoxygenated kD (Zexcie
= 430 or 550 nm) was nonemissive in room-temperature fluid
solution. A weak intrinsic emission in deoxygenategDHnedia
at room temperature from [(NGHe' (dpp)RU' (bpy)k]* (Aexcite
= 430 nm) withAgg, ("M) = 718 nm,7 < 40 NS Kobsd = 3 x
107 s7Y), andgem < 3 x 1074 was observed

! 1
[(d/r)(‘}m3 ),Ru (= *)pr/app]" [(d”)(sNH: ), R“]
A =591 nm
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Figure 1. Picosecond transient absorption difference spectra~eb a

x 107° M solution of [(NHs)sRu(dpp)Ru(bpyg*t in HO with 591-

nm pulsed laser excitation (2.5-ps pulse width). Each transient

absorption difference spectrum is the result of ca. 1000 laser shots at
75 ud/pulse. Each difference spectra were recorded in 43-ps intervals.
The energy dependence of the signal intensity was linear in this energy
regime.

Transient absorption difference spectra for [HYRU' (dpp)-
Ru'(bpy)]*™ (10> M) following 2-ps, pulsed, 591-nm
excitation are shown in Figure 1. The difference spectra are
characteristic of an MLCT-based excited state with a strong
positive signal atAi2 = 370-440 nm due tor* — &
transitions in the polypyridyl radical anion and a strong bleach
centered at\A?® = 540 nm due to loss of the ground-state
(07 Runig () ol — ()R] @DSOrPtion band?® The
transient absorption difference spectra evolve with time and
return to preexcitation levels in-12 ns. The transient absorp-
tion data for excited-state decay were time-resolved and fit to
a single, exponential decay function whkipsa= 3 (1) x 10°
s1 (r = 290 @80) ps). Laser flash photolysis studies using
354.7-nm excitation gave similar transient absorption difference
spectra and kinetic resultkyfsq= 2.3 @0.8) x 1P s (r =
230 @70) ps)). The excited-state dynamics of [(NHRU'-
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Figure 2. Picosecond transient absorption difference spectrum recorded
of a~5 x 1075 M solution [(CN)Fe(dpp)Ru(bpyj in H,0 recorded

5 ps after 591-nm pulsed laser excitation (4-ps pulse width). The
transient absorption difference spectrum is the result of ca. 500 laser
shots at 75uJ/pulse. The energy dependence of the signal intensity
was linear in this energy regime.

(dpp)RU (bpy)]+™ were found to be similar to those reported
for [(dptebCIRU'(LL)RU"Cl(bpy)]>™ (LL = bpe or 4,4bpy) 16

2 = A
o 00 OO
bpe

4,4'-bpy dpte

Scheme 1. Pulsed excitation at 355 or 591 nm results in
the formation of thel[(NH3);RU'(dpp~)Ru" (bpy)]*™ and
(NH3)sRU" (dpp~)Ru! (bpy)]*™* Franck—Condon excited states,
respectively, both of which decay within the 2-ps laser pulse to
the3[(NH3);sRU" (dpp~)RU' (bpy)]*™* MLCT excited state. The
3[(NH3)4RU" (dpp~)RU' (bpy)]*™ species then undergoes facile
nonradiative relaxation to repopulate the ground st@LiéT (n
Scheme 1).
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SCHEME 2
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Picosecond, laser-flash photolysis studies were conducted orfFigure 3. Picosecond transient absorption difference spectrum of a

aqueous solutions of [(NGF€E' (dpp)RU (bpy)] (1075 M) in
the same manner described for [(HRU' (dpp)RY (bpy)]*'.
Transient-absorption difference spectra for [(hWe&¥ (dpp)RU' -
(bpy)]* measured following 2-ps pulsed, 591-nm excitation into
the Y[(drr) 2{*) god — Y[(d) 2] MLCT band are shown in
Figure 2. The difference spectra are characteristic of an MLCT-
based excited state with a strong positive signala#{s, =
400 nm andAA2% = 500 nm due to the polypyridyl radical
anion and a strong bleach centerecdhaf” = 580 nm due to
loss of the ground staté[(dz) g(*) 5od — (d7) &, ab-
sorption band. The transient absorption signals\af®s,
400, 500, and 580 nm evolve with time and reach preexcita-
tion levels by 80 pskysg = 1.3 x 10 s71). The excited-
state dynamics in [(NGIF€' (dpp)RU (bpy)]* following [(dx)-
rd) god — U(dm) 2 excitation can be accommodated by
Scheme 2. The 591-nm excitation results in the formation of
the [(NC)4Fe" (dpp)RU'(bpy)]* Franck—Condon excited
state, which decays rapidly (within the 2-ps laser pulse) to the
S[(NC)4F€" (dpp)RuU'(bpy)]* based MLCT excited state.
3[(NC)4F€" (dpp)Ru' (bpy)]* then undergoes facile nonra-
diative relaxation € < 80 ps) to repopulate the ground state
(K¢ in Scheme 2).

Following 354.7-nm excitation into the[(dn) gu-
(@) Soyiapd — U(d) 2] MLCT band for [(NC)Fe!(dpp)Ru'-

~5 x 1075 M solution of [(CN)yFe(dpp)Ru(bpyg] in H,O recorded 5

ps after 355-nm pulsed laser excitation (70-ps pulse width). The
transient absorption difference spectrum is the result of 4000 laser shots
at 300uJd/pulse. The energy dependence of the signal intensity was
linear in this energy regime.

(bpy)], the prompt formation of a positive absorption &t
A3 = 365 nm andAA®S, > 600 nm are observed, Figuré3.
These signals do not evolve appreciably on the picosecond
time scale’® The important observation here is that the
[(NC)4F€E" (dpp~)RU' (bpy)]* excited state obtained following
354.7-nmY[(d71) R(T*) boyapd — M(dm) 3] excitation is ki-
netically and spectrally distindtom the excited state produced
by 591-nm{(dr) 27*) 5, — Y(dm) 2] excitation. The data
are consistent with formation of an [(NEE" (dpp~)RU' (bpy)]*
excited state with a high-spin Heconfiguration (denoted

4 (NC)4Fe" (dpp~)RU' (bpy)]), 8 which can only be accessed
via 1[(d7) R(*) poyrapd — 1(0) 2 excitation, Scheme %
Supporting evidence for this hypothesis comes from the FjNH
Ru'(dpp)RU (bpy)]*" system, where 10q in the Ru(NH),4
fragment is much greater than 0§ in the Fe(CN) frag-
ment. Therefore, the high-spin form of [(NJARU" is not
energetically accessible following 354.7-nm excitation, and the
observed photophysics are wavelength independent. The ob-
servation of a weak intrinsic emission from [(NE¥'(dpp)-
RuU'(bpy)]* (see above) suggests that intersystem crossing from
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SCHEME 3

1 [(CN;‘FeH(dpE;)Rum(bpy)g *
A

I[(d”)f(u(” *):)py/dpp](-l[(d”)lé{u]

A =355 nm

1[(CN3 Fen(dpp)RuH(bPY)2]

(NC)sFe! (dpp)RU" (bpy)]* to form S[(NC)sFe'(dpp-)-
RuU" (bpy)]* (®isc in Scheme 3) is competitive with excited-
state spin trapping to formd§(NC)sF€e" (dpp~)RuU' (bpy)]*
(®ESSTin Scheme 33819

ISC
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Photochemistry

resolved experiments were performed at Los Alamos National
Laboratory under the auspices of the U.S. Department of Energy
with funding from Laboratory Directed Research and Develop-

ment project number 94292 to J.R.S. Funding for travel grants

The important conclusion is that spin selection rules do not to Radiation Laboratory, University of Notre Dame, and Los
play an appreciable role in the photophysical properties of the Alamos National Laboratory from Wayne State University are

heterobimetallic bridged systems where spimbit coupling is

present? The apparent spin-forbidden nonradiative relaxation

in

“Y(NC),Fe" (dpp)RU' (bpy)l* — —
"[(NC),F€'(dpp)Rd (bpy),] (2)

is not due to spin selection rules and can be accommodate

using Marcus theory.

gratefully acknowledged.
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dpp is coordinated in a monodentate fashion to the [(N€'] fragment.

A first-order kinetic decay assigned to thermal recombination of [(R€'}
(OH)(n*-dpp)RU (bpy),] with concomitant loss of KD was observed on

the microsecond time scale. Details will be presented elsevifere.
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